Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer

نویسندگان

  • YAJUN GUO
  • LIJUAN WANG
  • PENG LV
  • PENG ZHANG
چکیده

In the present study, a targetable vector was developed for the targeted delivery of anticancer agents, consisting of lipid-coated poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) that were modified with transferrin (TF). Doxorubicin (DOX) was used as a model drug for lung cancer therapy. The use of these NPs combined the advantages and avoided the disadvantages exhibited individually by liposomes and polymeric NPs during drug delivery. The lipid coating of the polymeric core was confirmed by transmission electron microscopy. The physicochemical characteristics of transferrin-conjugated lipid-coated NPs (TF-LP), including the particle size, zeta potential, morphology, encapsulation efficiency and in vitro DOX release, were also evaluated. The cellular uptake investigation in the present study found that TF-LP was more efficiently endocytosed by the A549 cells, than LP and PLGA-NPs. Furthermore, the anti-proliferative effect exhibited by DOX-loaded TF-LPs on A549 cells and the inhibition of tumor spheroid growth was stronger compared with the effect of DOX-loaded lipid-coated PLGA-NPs and PLGA-NPs. In the in vivo component of the present study, TF-LP demonstrated the best inhibitory effect on tumor growth in the A549 tumor-bearing mice. It was concluded that TF-LP may be an efficient targeted drug-delivery system for lung cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin

BACKGROUND Nanostructured lipid carriers (NLC), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. The aim of this study was to develop surface-modified NLC as multifunctional nanomedicine for codelivery of enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX). METHODS TWO DIFFERENT NANOCARRIERS: pEGFP- and DOX-loaded NLC, an...

متن کامل

Doxorubicin Loaded Liposomal Nanoparticles Containing Quantum Dot for Treatment of Breast Cancer

In addition to increasing the efficacy of various drugs, Nanoparticles reduce their side effects. In this study, different nanoparticle formulations of Doxorubicin anticancer drugs were prepared. The efficacy of the formulations produced in the cell culture medium was studied compared with the free drug. Reverse phase evaporation was used to form the liposome containing do...

متن کامل

Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy.

The co-delivery of DNA and antitumor drugs has the potential to treat cancer. In this study, we aimed to develop surface-modified, co-encapsulated solid lipid nanoparticles (SLN) containing enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX) in order to create a multifunctional delivery system that targets lung cancer cells, in an effort to improve the efficacy of cancer t...

متن کامل

Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA

PURPOSE Nanostructured lipid carriers (NLC) represent an improved generation of lipid nanoparticles. They have specific nanostructures to accommodate drugs/genes, and thus achieve higher loading capacity. The aim of this study was to develop transferrin (Tf)-decorated NLC as multifunctional nanomedicine for co-delivery of paclitaxel (PTX) and enhanced green fluorescence protein plasmid. METHO...

متن کامل

Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015